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Fermi LAT electron + positron spectrum from 7 GeV to 1 TeV, taken
in the first 12 months of operation. Total statistics 7.95 M events

First publication: PRL 102, 181101, 2009 reported the spectrum
from 20 GeV to 1 TeV, taken in the first 6 months of operation. Total
statistics 4.7M events	 Y	 ,^^
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Fermi Gamma-ray Space Telescope NkJ6,

\Lr\•	 Two instruments onboard Fermi:

 Large Area Telescope LAT

• main instrument, gamma-ray telescope,
20 MeV - >300 GeV energy range

a
• scanning (main) mode - 20% of the sky

all the time; all parts of sky for ~30 min.
every 3 hours f ^^^^{

5-year m

• ~ 2.4 sr field of view, 8000 cm 2 effective
area above 1 GeV

•
f

good energy (5-10%) and spatial (~ 3 0 at
100 MeV and <0.1 0 at 1 GeV) resolution

F	 +•

  G LAST Burst Monitor G B M

ission (10-year goal), 565 km circular orbit, 25.60 inclination
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Fermi LAT as a detector of high energyMENEM
electroncosmic ray7&i •	 A	 1	 x	 : 1: • The LAT is composed of a 4x4 array of

identical towers. Each tower has a Tracker and
a Calorimeter module. Entire LAT is covered by

	

-t-	 segmented Anti-Coincidence Detector (ACD).

• Although the LAT was designed to detect

	

e	 e– photons, it was recognized early in its design

	

+	 that the LAT is a capable detector of high
r

#	 =	 energy electrons too
Y	 Y	 N	 Y	 Y	 N	 N

S	 !

• The electron data analysis is based on that developed for photons.
The main challenge is to identify and separate electrons from all other
charged species, mains CR protons for gamma-ray anal

	

9	 p	 ^	 Y	 p	 (	 9	 Y	 sis this isY

	

provided by the Anti -Coincidence System)	 -

• The hadron rejection power must be 10 3 –104 increasing with energy ,^
5
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EWA

Electron Event Selection
Y .'tea	 : *^elescopc

•All the LAT subs stems_ racer calor' eter anY	 –^	 ,	 ^ 	 A
contribute to the event selection

• Event selection is based on the difference between

C

electromagnetic and hadronic event topologies in the
r	 r	 r	 r	 r	 j	 ~	 ^	 n

Flight event display

instrument

}	 r
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• Electron event selection is a complicated, highly-optimized process that
utilizes numerous physical variables from all 3 LAT subsystems, as well as
combined variables calculated with the Classification Tree method

r • Most of the selections are energy dependent or scaled with the energy

• The most powerful separators between electromagnetic and hadronic
events are the lateral distributions of the shower image

rU MI F	
"° '°° ""	 Tracker average time over threshold

Shower transverse size	 (units of MIP)	 4—
zsoo	 ' r
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r
Fractional tracker extra clusters 	 ergy per ACD tile

Histograms of selected variable distributions for
the electron (red) and proton (black) events
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,e^ r. r. ' Event energy reconstructio
Gam a

//Sp cTe`eswpc, ^ ^
	 ^^

• Based on the 	 r algorithms developed f the
^	 p	 ^

LAT photon analysis

• Extended to 1 TeV for the electron analysis1

• Validated in extensive beam tests (SLAC, r

CERN, GSI)

	

•	 15001

• Cross-checked with subset of events with
long paths in the calorimeter, providing best

i0fiti	 i0i $i	 `1'	 12^	 1:4

energy resolution (better than 5% up to 1 TeV)	 R6ccinstruct deign'ergY/,Monte^COria!ienergY'

.. ;Ei7e{gy'i(Ge,V};ii1

Spectrum cross check with

path events	 s	 '^



EWA
"Ilk 61^L

81,;r	 r•	 r• Spectrum extension down to 7 GeV
{Gam a	 fs«Te'es^ (new in respect to the PRL paper) IF

• Lowering the spectrum from 20 GeV to 7 GeV (lowest geomagnetic
cutoff energy accessible to the Fermi satellite) requires considering the
shielding effect of the geomagnetic field 	 '	 }^

• The lowest energy of primary electrons that can be measured is
strongly dependent on the satellite geomagnetic position and decreases
with increasing geomagnetic latitude

4a	 1:r 	 r 	: 	 w	 2	 r	 i r	 r
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• Very high event counting statistics makes our result dominated by
systematic uncertainties.

r

• Main contributor to the systematic uncertainty is imperfect 0

knowledge of the LAT response, mainly the effective geometric factor
(5-20% increasing with energy) 	 r	 r

	

0	 f	 f	 f	 r

	

YY	 Y	 L	 Y	 Y
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• Another contributor comes from subtraction of residual hadron
contamination (< 5%)	

r

• Uncertainty in absolute energy scale is +5-10%

r

1

	 ^



Attempt to fit with broken injection
spectrum

Fermi LAT spectrum fitted by a GALPROP-computed spectrum
(blue line) with an injection spectral index Γ=1.6/2.5 /
below/above 4 GeV and a steepening to F=4 above 2 TeV, and
modulated in a force -field approximation with Φ = 450 MV 11
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-SOME POSSIBILITIE
a

Modify conventional diffusive
r

Add local source
n	 n 	 w	 d

Pulsars as potential sources

PAMELA results and the need for two
primary source classes 	 Y

r	 ^	 r

Main message: use the HE
s ectrum to constrain the

I	 I m

p	 ,
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Fit with additional source

FERMI (2010) 
preliminary

l ÎmL-I ly T' f

10'	 102	 103
F (r,PV)

he e- +e+ spectrum computed with the GALPROP (blue line)
with injection spectrum F=1.6/2.7 below/above 4 GeV and an
dditional component with an injection spectrum F=1.5 and
xponential cutoff	 13
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Signatures of nearby pulsars: bumps in a
spectrum

Systematic

errors not

shown

Nearby pulsars can reveal themselves in e+ e- spectrum:
e'es`^ .r	 Contribution from selected Fermi pulsars

f
Contribution to the local electron flux from the most 	 Total electron flux (black line): sum of
prominent Fermi pulsars. Red points – Fermi LAT 	 single power law (blue line) and
data	 ;	 contributI

culations

n from local pulsars
1 – Geminga, 2 –J1732-31, 3 – J1057-5226 f	 ;
4 –J2021+4026, 5–J0357+32, 6–J1836+5925	 Ca 	 according to
7 – J2043+2740 	 \	 1	 Gendelev, Profumo and Dormody

\ 	 a rXiv:1001.4540Solid black line –total contribution from pulsars
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• Spectral features of the Fermi LAT electron spectrum are ^\

r
consistent with presence of nearby source(s).

• Fermi LAT has recently found numerous gamma-ray pulsars, with

several of them within 1-2 kpc, that make this explanation viable.
r	 r

• Fermi LAT electron spectrum can be explained without
i	 r	 r	 -L	 L

introducing different mechanisms of electron production in the
n 	 ^	 ^	 ^	 ^	 Y	 N	 Y	 Y	 N	 N

sources or different type of sources. f

• Search for small irregularities in electron spectrum contributes to

the understanding of their origin: astrophysical or

Malyshev, Chollisand Gelfand, PRD D80, 063005, 2009) 	 =

xotic (see e.g.

%	 15



{yam a	 Now – PAMELA result on the positron fraction.
IVA/ rSp cTe`eswpc

Example of fit to both Fermi and Pamela data with Monogem and Geminga pulsars
VA	 NJ	 i	 li	 TO	 Ti	 1A	 1%

	

ti	 r
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4 1012 10 Di
	

- ^O}' 	Il 1Z	 .^

It is assumed that additional sources (here Monogem and Geminga) y
-	 --provide equal amount of e+ and

jF

Question: why are the e+ e- sources not seen at lower energy, where
L

the positron fraction agrees with their pure secondary origin? 	 ,^
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EWA
Ilk 6

,^eL •.	 Two mechanisms of primary electron
Gam a	 ^ ^	 n

	

s^Te'es^°r 	 production are needed

• General idea is that the “nearby” source(s) produces ~equal 	 ^
amount of e+ and e - , causing the positron fraction to increase

• Is this nearby source unique ? Unlikely 1	 1	 `
• Possible interpretation of the Pamela result could be if the total flux
comprises a larger flux with softer index of “primary” negative electrons
(e.g. directly accelerated in SNR shock), and smaller flux of e ++e - with
harder index which starts showing up at higher energy, causing positron
ratio to increase
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Soft spectrum
of secondary
positrons

Positron spectra

AMI
— Expected background	 •	 7.

^Wdh addiLOnal sourceiof pnmary ;e' 	} 	 RosiIr ,n is,pemcr,Lra,
PAMELA (Adam et al ;'Nature 2009Ji	 i

51

	

M	 dl

z L
t	 ^o.

t...........
"	 ^ 'I	 •,F,er,mi',;d'eri; ed'

_ —^ _--	
h	

• H EAT

• ;OAP,RICE'

1,00

	

' I	 EnerUy. h, 00V'
1	 r	

•I	
^	 I

Hard spectrum
of e+ and e-Spectral index for positron

1	 Can be only	 spectrum (derived from Fermi’s
positrons? s	

e++e- and PAMELA’s positron

	

•	 fraction) Γ ≈ 2.4

%	 18p
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s	 Origin of hard spectrum of pairs

I
`1	 ,Y

What could be the origin of the e + +e - hard spectrum?
r

There are several models, including acceleration of
“secondary” e + and e- in the CR acceleration regions
(Blasi), consideration of Klein-Nishina suppression of 	 New MSPs in
energy losses near the points of origin (Aharonian & 	 LAT sources
Atoyan 1991, Stawarz et al. 2009), enhanced e + +e-
acceleration in polar cap ( Biermann et al. 2009)

C	 :	 ?	 L

Multiple cascading in pulsar magnetosphere can 	 j 
4

provide needed acceleration of e + +e-	 r . 3

s	 2

r	 •

Even more romisin g sources of hi g h energy

	

airs	 4. '0.'6	 '6.5	 -1.6	 "115'	 2'D'	 ;3 5

could be milisecond pulsars (MSP) due to their 	 d^kp^

high rotation frequency and low surface magnetic 	
From A. Harding,

field (low energy losses) 	 HEAD2010r	 i	 n	 i

' 19
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_ From Alice Harding’s talk at HEAD-2010: .7 LIT
• Can start constraining pulsar parameters using CR data

r	 n

• Impulsive injection of from pulsar wind nebulae (PWNe) of young

pulsars will produce soft (r > 2) spectrum

• Steady injection by mature and MSPs (without PWNe) will produce

harder (r ~ 1.5 – 2)

Gamma-ray pulsatio
required –screening
must have high pair

New MSPs (18 so far
unidentified sources

rL



SUMMARY OF OBSERVATIONS

• Real breakthrough during last 1-1.5 years in ,	
0BET

S( 001) THHEAT (2001)	 X PPB-BETS (2008)
p BETS (2001)	 ^ HESS (2008- 9)

DE/E=± 10%

cosmic ray electrons: ATIC, HESS, Pamela, and	 'V)	 -	 r	 ^ _

finall Fermi-LAT. New quality data have made "E 102	 _Y	 q	 Y
.' it possible to start quantitative modeling. 	 r

w

• With the new data more puzzles than before; w 
10'

need “multi-messenger” campaign: electrons,
10°	 10 	 102	 10'

positrons, gammas, X-ray, radio, neutrino... 	 4	 (GeV)
- 	 r	 r	 r

• We may be coming close to the first direct detection of cosmic ray sources

• Now we can discuss not only the origin of CR electrons, but also constraints of
p uIsar models based on these results.-	 I	 =^	 I	 I	 I
• It is viable that we are dealing with at least two distinct mechanisms of “primary”
electron (both signs) production. One produces softer spectrum of negative
electrons, and the other produces a harder spectrum of both e ++e- . Exotic (e.g. DM)
origin is not ruled out.

I	 1

• More accurate measurements are on the way from Fermi, PAMELA and HESS.
Critical new results on the positron fraction are expected from the AMS. Results
from Fermi-LAT on high energy electrons anisotropy are coming soon 	 21
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